Aromaten(phosphan)metall-Komplexe, XV¹⁾

Darstellung neutraler und kationischer Aren(carbonyl)metall-Komplexe des Rutheniums und Osmiums mit C_6Me_6Ru und C_6H_6Os als Baueinheiten

Karin Roder und Helmut Werner*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 17. November 1988

Key Words: Fischer-Tropsch synthesis, model studies / Hydride abstraction / Osmium(benzene) complexes / Ruthenium(hexamethylbenzene) complexes

Die Benzolosmium(0)-Verbindungen $C_6H_6Os(CO)L$ [8: L = $PiPr_3$, 9: L = P(OiPr)_3; 10: L = P(OPh)_3] werden durch Reduktion von [C₆H₆OsI(CO)L]PF₆ (5-7) mit NaC₁₀H₈ in THF hergestellt. Bei der Protonierung von 8 und 9 mit NH₄PF₆ oder HBF₄ entstehen die Hydridoosmium(II)-Komplexe [C₆H₆OsH(CO)L]X (11; 12a, b), die mit NaH wieder zu den Neutralverbindungen 8 und 9 reagieren. Der zu 11 und 12a analoge Carbonyl(ethylen)hydridoosmium(II)-Komplex $[C_6H_6O_8H(CO)(C_2H_4)]PF_6$ (21a) bildet sich nahezu quantitativ bei der Umsetzung von C₆H₆Os(CH₃)₂(CO) mit [CPh₃]PF₆ und ergibt nach Deprotonierung mit NaH C6H6Os(CO)(C2H4) (22). Durch Reaktion von C₆H₆OsI₂(CO) mit Methyllithium und von 21a mit NaI werden die Alkyl(iodo)osmium-Verbindungen C6H6OsCH4(CO)I (24) und $C_6H_6OsC_2H_3(CO)I$ (23) erhalten. Ausgehend von C_6Me_{6-1} RuCl₂(CO) sind die Ruthenium-Komplexe [C₆Me₆RuCl(CO)₂]-PF₆ (15), C₆Me₆Ru(CO)₂ (16) und C₆Me₆Ru(CH₃)₂(CO) (25) zugänglich.

Im Rahmen systematischer Studien zur Metall-Basizität von Halbsandwich-Komplexen²⁾ hatten wir vor einigen Jahren eine Reihe von Verbindungen des Typs $C_6R_6M(L)L'$ (M = Ru, Os) mit L und L' = PR₃ und P(OR)₃ sowie mit L = PR₃ und L' = C_2H_4 , C₃H₆ dargestellt und ihre Reaktivität gegenüber Elektrophilen untersucht^{3,4)}. Dabei fanden wir, daß die Bis(phosphan)-Verbindungen C₆R₆M(PR₃)₂ stärkere Metall-Basen als die Olefin(phosphan)-Komplexe $C_6R_6M(PR_3)(C_2H_3X)$ sind, was auf die unterschiedliche Elektronendichte am Metall, bedingt durch den unterschiedlichen Donorcharakter von PR₃ und C₂H₃X, zurückzuführen ist. Noch weniger basisch als die Komplexe $C_6R_6M(PR_3)(C_2H_3X)$ sollten die entsprechenden Carbonyl(phosphan)-Verbindungen C₆R₆M(PR₃)-(CO) sein, von denen bisher nur zwei Vertreter, C₆Me₆Ru(PMe₃)-(CO) und $C_6H_6Os(PMe_3)(CO)$, spektroskopisch nachgewiesen, jedoch nicht in analysenreiner Form isoliert worden waren³⁾. Jegliche Kenntnisse fehlten über analoge Aromatenmetalldicarbonyle $C_6R_6M(CO)_2$ (M = Ru, Os), die als mögliche Vorstufen für C-H-Aktivierungsreaktionen interessant sein könnten. Graham und Mitarbeiter hatten kürzlich gezeigt⁵⁾, daß vergleichbare Cyclopentadienyliridium-Komplexe $C_5R_5Ir(CO)_2$ (R = H, Me) bei Photolyse ein 16-Elektronen-Fragment [C₅R₅Ir(CO)] bilden, das mit Kohlenwasserstoffen (selbst mit Methan⁶) unter oxidativer Addition reagiert.

Die vorliegende Arbeit berichtet über die Herstellung und die erstmalige analytische Charakterisierung von Komple-

Arene(phosphane)metal Complexes, XV^{1} . – Synthesis of Neutral and Cationic Arene(carbonyl)metal Complexes of Ruthenium and Osmium with C₆Me₆Ru and C₆H₆Os as Building Blocks

The benzeneosmium(0) compounds $C_6H_6Os(CO)L$ [8: L = PiPr₃; 9: $L = P(O_iP_r)_3$; 10: $L = P(OPh)_3$] are prepared by reduction of [C₆H₆OsI(CO)L]PF₆ (5-7) with NaC₁₀H₈ in THF. Protonation of 8 and 9 with NH₄PF₆ or HBF₄ gives the hydridoosmium(II) complexes [C₆H₆OsH(CO)L]PF₆ (11; 12a, b) from which the neutral compounds 8 and 9 are regenerated with NaH. The carbonyl(ethylene)hydridoosmium(II) complex [C6H6OsH(CO)- (C_2H_4)]PF₆ (21a), an analogue of 11 and 12a, is almost quantitatively obtained from $C_6H_6Os(CH_3)_2(CO)$ and $[CPh_3]PF_6$ it gives C₆H₆Os(CO)(C₂H₄) (22) by deprotonation with NaH. Reactions of $C_6H_6OsI_2(CO)$ with methyllithium and of 21a with NaI lead to the formation of the alkyl(iodo)osmium compounds C₆H₆OsCH₃(CO)I (24) and C₆H₆OsC₂H₅(CO)I (23), respectively. The synthesis of the ruthenium complexes [C₆Me₆RuCl(CO)₂]PF₆ (15), C₆Me₆Ru(CO)₂ (16), and C₆Me₆Ru(CH₃)₂(CO) (25) has been achieved using C₆Me₆RuCl₂(CO) as the starting material.

xen des Typs C₆H₆Os(CO)L und C₆Me₆Ru(CO)L, weist auf die Existenz der Dicarbonyl-Verbindung C₆Me₆Ru(CO)₂ hin, und beschreibt eine neue Synthesemethode für Benzolosmium(0)-Komplexe, die zugleich auch Antwort auf die Frage nach der Präferenz möglicher Elementarschritte der Fischer-Tropsch-Synthese gibt. Über das zuletzt genannte Ergebnis liegt bereits eine Kurzmitteilung vor⁷.

Darstellung und Reaktivität der Komplexe $C_6H_6Os(CO)L$ [L = PR₃, P(OR)₃]

Nach bewährtem Vorbild^{3,4)} diente $[C_6H_6OsI_2]_2$ als Ausgangssubstanz für die Synthese der gesuchten Benzolosmium(0)-Verbindungen. Bei Einwirkung von PMe₃⁸⁾, PiPr₃⁹⁾, P(OMe)₃ und P(OiPr)₃ reagiert der Zweikernkom-

plex unter Spaltung der Halogeno-Brücken und Bildung der einkernigen Produkte 1-4 (Gl. 1). Die Trialkyl- bzw. Triarylphosphit-Verbindungen 3 und 4 sind ebenso wie die schon beschriebenen Komplexe 1 und 2 rote, wenig luftempfindliche Feststoffe, die in chlorierten Kohlenwasserstoffen gut löslich sind. Ihre ¹H- und ³¹P-NMR-Daten sind in Tab. 1 angegeben.

Tab. 1. ¹H- und ³¹P-NMR-Daten der Komplexe 3-12 (¹H-NMR: 60 MHz; δ in ppm, TMS int.; J in Hz. ³¹P-NMR: 90 MHz; δ in ppm, 85proz. H₃PO₄ ext.)

Komplex, Solvens	δ(C ₆ H ₆)	δ(PR ₃) J(PH), J(HH)	δ(PR ₃)	
3, CDCl ₃	5.20 (d) ^{a)}	5.00 (m) [POCH] 1.18 (d) [CHCH ₃] - 60	49.96 (s)	
4 , CDCl	5.33 (d) ^{b)}	7.45 (m)	54.12 (s)	
5, CD ₃ NO ₂	6.74 (br. s)	2.35 (m) [PCH] 1.38 (dd) [CHCH ₃] 15.6, 6.6 1.35 (dd) [CHCH ₃] 14.4, 6.6	16.49 (s)	
6 , (CD ₃) ₂ CO	6.93 (br. s)	4.87 (m) [POCH] 1.47 (d) [CHCH ₃] , 6.1 1.42 (d) [CHCH ₃] , 6.3	55.99 (s)	
7, CD ₃ NO ₂	6.25 (br. s)	7.43 (m)	55.59 (s)	
8, C ₆ D ₆	4.92 (s)	2.00 (m) [PCH] 1.21 (dd) [CHCH ₃] 13.8, 6.8	41.71 (s)	
9, C ₆ H ₆	5.04 (s)	4.66 (m) [POCH] 1.36 (d) [CHCH ₃] -, 6.0	109.64 (s)	
10, C ₆ D ₆	4.57 (s)	7.13 (m)		
11° [,] CD ₃ NO ₂	6.47 (m)	2.42 (m) [PCH] 1.27 (dd) [CHCH ₃] 15.0, 7.2 1.25 (dd) [CHCH ₃] 15.0, 7.2	38.96 (s) ^{d)}	
12a ^{c)} , (CD ₃) ₂ CO	6.76 (m)	4.70 (m) [POCH] 1.38 (d) [CHCH ₃] -, 6.0	79.29 (s) ^{d)}	
12b ⁰ , (CD ₃) ₂ CO	6.77 (m)	4.70 (m) [POCH] 1.37 (d) [CHCH ₃] -, 6.0		

^{a)} $J(PH) = 0.4. - {}^{b)} J(PH) = 0.5. - {}^{c)} \delta(OsH) = -12.54$ (d), $J(PH) = 26.7. - {}^{d)}$ Dublett in off-resonance. $- {}^{e)} \delta(OsH) = -13.07$ (d), $J(PH) = 32.0. - {}^{f)} \delta(OsH) = -13.05$ (d), J(PH) = 32.0.

Die Umwandlung der Neutralverbindungen 2-4 in die Komplexsalze 5-7 erfolgt durch Reaktion mit AgPF₆ in Aceton unter CO (Gl. 2). Wir nehmen an, daß dabei, wie auch in anderen Fällen⁸, intermediär Solvens-Komplexe der Zusammensetzung [C₆H₆OsI(L)S]PF₆ (S = Aceton) gebildet werden, die mit CO unter Ligandenaustausch reagieren. Um eine Rückreaktion zu vermeiden, ist es notwendig, die Fällung der Produkte 5-7 unter ständigem Einleiten von CO vorzunehmen. Bei der Umsetzung von 4 mit AgPF₆ und CO entstehen mehrere, nicht näher charakterisierbare Nebenprodukte, die säulenchromatographisch von 7 abgetrennt werden können. Ihre Bildung ist vermutlich darauf zurückzuführen, daß Triphenylphosphit ein schwächerer Donor als $PiPr_3$ und $P(OiPr)_3$ ist und dadurch eine größere Labilität des Kations von 7 verursacht. Die Tatsache, daß im ¹H-NMR-Spektrum der ausgehend von 4 erhaltenen Reaktionslösung das Signal von freiem Benzol auftritt, stimmt mit dieser Aussage überein.

Für die Reduktion der Kationen von 5-7 zu den entsprechenden Osmium(0)-Komplexen 8-10 hat sich wie schon früher^{3,4)} das Radikalanion des Naphthalins bewährt. Selbst bei -78 °C in THF verläuft die in Schema 1 gezeigte Reaktion allerdings nicht eindeutig, da außer 8-10 (und Naphthalin) auch größere Anteile an Neben- bzw. Zersetzungsprodukten entstehen. Die Reinigung von 8 und 9 erfolgt über die PF₆- bzw. BF₄-Salze der entsprechenden Hydridometall-Kationen. Von 10 lag nur eine kleine Menge vor (die zudem noch mit Naphthalin verunreinigt war), so daß auf eine Umsetzung mit HBF₄ zu [C₆H₆OsH(CO)-P(OPh)₃]BF₄ und eine nachfolgende Rückumwandlung verzichtet werden mußte.

Schema 1

Die Neutralverbindungen 8 und 9 sind erwartungsgemäß Metall-Basen und können sowohl mit NH_4PF_6 als auch mit HBF_4 in die Komplexsalze 11 und 12a,b übergeführt werden. Die Protonierung von 9 mit NH_4PF_6 erfolgt wesentlich langsamer als diejenige von 8 und verläuft auch nicht vollständig, was ein Ausdruck der verminderten Nucleophilie des Metallzentrums ist. 11 und 12a,b sind farblose bis beigefarbene Feststoffe, für die korrekte Elementaranalysen vorliegen. Die IR-Spektren zeigen eine intensive CO-Valenzschwingung bei $\tilde{v} = 1959$ (11) bzw. 1990 cm⁻¹ (12a,b), die gegenüber den Neutralverbindungen 8 und 9 um ca. 100 cm⁻¹ nach höheren Wellenzahlen verschoben ist. Dies stimmt mit früheren Erfahrungen bei C₆H₆Os(PMe₃)(CO), C₆Me₆Ru(PMe₃)(CO) und den entsprechenden Hydridometall-Kationen überein³⁾. Die ¹H- und ³¹P-NMR-Daten von 11 und 12a,b sind in Tab. 1 angegeben.

Die Deprotonierung der kationischen Komplexe $[C_6H_6-OsH(CO)L]^{\oplus}$ zu $C_6H_6Os(CO)L$ (8, 9) wird (siehe Schema 1) vorteilhaft mit NaH in THF durchgeführt. Diese Methode hatte sich bereits bei der Darstellung von $C_6H_6Os(PMe_3)-(C_2H_3X)^{4}$, $C_6H_6Os(PR_3)(C_2H_4)^{10}$ und (p-Cym)Os(PR_3)L¹¹ (p-Cym = p-Cymen = 1-Me-4-iPrC_6H_4) bewährt. Mit 8 (hell-gelbes, sehr luftempfindliches Pulver) wurde erstmals eine Carbonylmetall-Verbindung des Typs (C_6R_6)M(CO)L auch elementaranalytisch charakterisiert.

Versuche, durch Photolyse von 8, 9 und C_6H_6Os -(PMe₃)(CO) unter Abspaltung von CO ein 16-Elektronen-Fragment [C₆H₆Os(L)] zu erzeugen und dieses für eine intermolekulare C-H-Aktivierung zu nutzen, hatten keinen Erfolg. Ähnlich wie der Dihydrido-Komplex C₆H₆OsH₂-(PiPr₃) sind auch die Carbonyl-Verbindungen C₆H₆Os-(CO)L bei Bestrahlung (Philips HPK 125 W, Hanovia 450 W, RPR 3500 und 2537 Å) inert und zeigen in Benzol oder Benzol/Hexan nur in geringem Ausmaß Zersetzung. Auch eine intramolekulare Cyclometallierung, wie sie bei der Reduktion von $C_6H_6OsI_2(PiPr_3)$ mit $NaC_{10}H_8$ beobachtet wurde⁹, ließ sich bei der Photolyse von 8 in verschiedenen Kohlenwasserstoffen nicht nachweisen. Wir nehmen an, daß in den Komplexen C₆H₆Os(CO)L die Rückbindung vom Metall zum CO-Liganden sehr ausgeprägt ist, was mit der Lage der $\tilde{v}(CO)$ -Banden bei relativ niedrigen Wellenzahlen (8: 1855; 9: 1888; C₆H₆Os(CO)PMe₃: 1840 cm⁻¹) übereinstimmt.

Syntheseversuche von C₆R₆M(CO)₂

Von den für die Synthese der Dicarbonyl-Komplexe in Frage kommenden Ausgangsverbindungen $[C_6R_6MX_2]_2$ war das Hexamethylbenzolruthenium-Derivat $[C_6Me_6-RuCl_2]_2$ bereits mit CO zu $C_6Me_6RuCl_2(CO)$ (14) umgesetzt worden⁸⁾. Analog ist auch $C_6H_6OsI_2(CO)$ (13) erhältlich (Gl. 3). Nach Erwärmen einer CO-gesättigten Suspension von $[C_6H_6OsI_2]_2$ in CH₂Cl₂ für 20 h auf 40 °C entsteht 13 quantitativ. Die Umsetzung der roten, luftstabilen Verbindung mit AgPF₆ unter CO ergibt allerdings nicht das gewünschte Komplexsalz $[C_6H_6OsI(CO)_2]PF_6$. Die während der Reaktion aufgenommenen NMR-Spektren zeigen die Bildung von freiem Benzol, d.h. daß bei Einwirkung von AgPF₆ auf 13 unter CO eine Spaltung der C_6H_6-Os -Bindung erfolgt.

Etwas günstiger ist die Situation bei der entsprechenden Umsetzung von 14 mit AgPF₆ und CO. Die Aufarbeitung wird zwar auch hier durch wiederholte Eintrübung der Filtrate erschwert, doch kann der Komplex $[C_6Me_6RuCl-(CO)_2]PF_6$ (15) nach Abtrennung der Verunreinigungen in 60proz. Ausbeute isoliert werden. Die Reduktion des PF₆-Salzes mit zwei Äquivalenten NaC₁₀H₈ nach Gl. 4 liefert nach chromatographischer Aufarbeitung ein gelbbraunes Öl, das neben C₁₀H₈ die Dicarbonyl-Verbindung C₆Me₆. Ru(CO)₂ (**16**) enthält. Trotz mehrfacher Trennversuche gelang die Isolierung eines analysenreinen Produkts jedoch nicht. Das IR-Spektrum von **16** zeigt erwartungsgemäß zwei scharfe Banden bei $\tilde{v} = 1973$ und 1903 cm⁻¹ (in Hexan), die zusammen mit dem ¹H-NMR-Spektrum (ein Signal bei $\delta = 1.99$, in C₆H₆) die angegebene Zusammensetzung bestätigen.

Die Syntheseversuche von $C_6H_6Os(CO)_2$ direkt ausgehend von $[C_6H_6Osl_2]_2$ oder $C_6H_6Osl_2(CO)$ (17) führten zu keinem Erfolg. Nach der von Bennett z. B. für $C_6Me_6Ru(C_2H_4)_2$ entwickelten Methode (Reaktion von $[C_6Me_6RuCl_2]_2$ mit Na₂CO₃ in EtOH unter Ethylen)¹²⁾ erhält man nicht 17, sondern Osl₂(CO)₄ (18), wobei das IR-Spektrum erkennen läßt, daß ein *cis/trans*-Isomerengemisch vorliegt (siehe Schema 2). Osl₂(CO)₄ wurde erstmals von Hieber und Stallmann synthetisiert, und die IR-Daten des *cis-* und des *trans*-Isomeren wurden später von Pankowski und Bigorgne bestimmt¹³⁾.

Schema 2

Darstellung und Metall-Basizität von C₆H₆Os(CO)(C₂H₄)

Die Darstellung von $C_6H_6Os(CO)(C_2H_4)$ (22), des ersten Benzolosmium(0)-Komplexes mit zwei verschiedenen, einzähnigen π -Akzeptorliganden, ließ sich auf einem etwas ungewöhnlichen Weg realisieren. Wir hatten kürzlich gezeigt¹⁴), daß die Dimethylmetall-Verbindungen $C_6Me_6Ru(CH_3)_2$ - (PR_3) , C₆H₆Os $(CH_3)_2(PMe_3)$ und C₅H₅Ir $(CH_3)_2(PiPr_3)$ mit [CPh₃]PF₆ zu den entsprechenden Ethylen(hydrido)metall-Kationen $[(C_n R'_n) MH(C_2 H_4)(PR_3)]^{\oplus}$ reagieren und hatten die Bildung dieser Produkte (in Übereinstimmung mit einem Vorschlag von Cooper et al.¹⁵) über eine primäre Hydrid-Abstraktion und nachfolgende Umlagerung der Zwischenstufe $[C_n R'_n]M(=CH_2)CH_3(PR_3)]^{\oplus}$ interpretiert. Auf ganz analoge Weise ist auch der Ethylen(hydrido)-Komplex 21a erhältlich (siehe Schema 3). Die als Startsubstanz benötigte Dimethyl-Verbindung 19 entsteht in guter Ausbeute durch Umsetzung von 13 mit überschüssigem Methyllithium in Ether. Es ist ein blaßgelber Feststoff, der nur wenig luftempfindlich, thermisch bemerkenswert stabil und gegenüber Lewis-Basen erstaunlich inert ist. Im Einklang mit früheren Ergebnissen³⁾ läßt sich in Lösung unter CO, selbst nach mehrtätigem Rühren, keine Umlagerung von 19 zu einem Acyl-Komplex nachweisen.

Die bei -78° C durchgeführte Reaktion von 19 mit [CPh₃]PF₆ in CH₂Cl₂ ergibt praktisch quantitativ die Ethylen(hydrido)-Verbindung 21a. Der beigefarbene mikrokristalline Feststoff zeigt ähnliche Eigenschaften wie der früher auf völlig anderem Weg hergestellte Komplex [C6H6O8H-(C₂H₄)PMe₃]PF₆⁴⁾. Charakteristisch von den spektroskopischen Daten sind die intensive CO-Valenzschwingung im IR-Spektrum bei $\tilde{v} = 2020 \text{ cm}^{-1}$ und die Hochfeld-¹H-NMR-Resonanz bei $\delta = -11.97$, die das Vorliegen einer Os-H-Bindung bestätigt. Für die Protonen des π-gebundenen Ethylens erhält man das typische Signalmuster eines AA'XX'-Systems, wobei ein leichter Dacheffekt in den a₂bzw. x₂-Teilen der Halbspektren den Übergang zu einem AA'BB'-System erkennen läßt. Aus den ab-Teilen der Halbspektren ergibt sich für L ein Wert von ca. 7.7 Hz, der eine Abschätzung der geminalen HH- und cis-HH-Kopplung von J = 0.15 und 7.85 Hz ermöglicht. Diese Zahlenangaben stimmen mit Literaturdaten¹⁶⁾ recht gut überein. Im ¹³C-NMR-Spektrum beobachtet man sowohl für den CO-Li-

Schema 3

ganden als auch für das koordinierte Ethylen Singuletts (für genaue Angaben siehe Experimenteller Teil), was auf eine bezüglich der NMR-Zeitskala rasche Rotation des Olefins um die Os – C₂H₄-Bindungsachse schließen läßt. Zum Bildungsmechanismus von **21 a** aus **19** nehmen wir an, daß das Trityl-Kation an einer Os – CH₃-Gruppe angreift und ein Hydrid-Ion abspaltet. Aus der Zwischenstufe **20** (Schema 3) bildet sich durch CH₃-Wanderung (und wahrscheinlich nicht durch CH₂-Insertion¹⁷) die entsprechende Ethylmetall-Verbindung, aus der dann durch β-H-Verschiebung **21 a** entsteht. Für eine Radikalbeteiligung bei der Umwandlung von **19 in 21 a**, wie sie bei der Bildung von [(C₅H₅)₂WH(C₂H₄)][⊕] aus (C₅H₅)₂W(CH₃)₂ und [CPh₃]PF₆ nachgewiesen ist^{15b}, gibt es keine Hinweise.

Ein Gleichgewicht zwischen dem Ethylen(hydrido)metall-Kation von **21a** und seinem Ethyl-Tautomeren läßt sich weder ¹H-NMR-spektroskopisch noch durch Deuterierungs-Experimente¹⁸⁾ nachweisen. Daß eine H-Verschiebung vom Metall zum koordinierten Ethylen jedoch möglich ist, zeigt die Umsetzung von **21a** mit NaI, die in sehr guter Ausbeute zu dem Komplex **23** führt (Schema 3). Dieser bildet orangefarbene, luftempfindliche Kristalle, die sich in organischen Solvenzien gut lösen und deren Zusammensetzung durch Elementaranalyse und Massenspektrum gesichert ist.

$$(5)$$

Die zu 23 analoge Iodo(methyl)osmium-Verbindung $C_6H_6OsCH_3(CO)I$ (24) ist durch Umsetzung von 13 mit einer äquimolaren Menge Methyllithium erhältlich. Hierbei entsteht allerdings immer, selbst wenn man weniger als ein Äquivalent Methyllithium einsetzt, auch der Dimethylosmium-Komplex 19 (siehe Gl. 5), was für vergleichbare Geschwindigkeiten bei der Bildung von 24 aus 13 und von 19 aus 24 spricht. Die Trennung des Produktgemisches gelingt durch Säulenchromatographie. Wegen der dabei auftretenden Verluste (und der schon erwähnten mäßigen Ausbeute) wurde nur eine geringe Menge von 24 in reiner Form isoliert, so daß die Charakterisierung auf die IR- und NMR-Daten sowie auf das Massenspektrum beschränkt blieb.

Auf gleiche Weise wie 19 ist auch die analoge Hexamethylbenzolruthenium-Verbindung C₆Me₆Ru(CH₃)₂(CO) (25) zugänglich (Gl. 6). Sie bildet ebenso wie 19 blaßgelbe Kristalle, die wenig luftempfindlich, relativ leicht flüchtig und thermisch bis 117 °C stabil sind. Sie können diesbezüglich dem Komplex C₆Me₆Ru(CH₃)₂(PPh₃)¹⁹⁾ an die Seite gestellt werden. Im Gegensatz zur Darstellung von 21 a aus 19 findet bei der Einwirkung von [CPh₃]PF₆ auf 25 keine einheitliche Reaktion statt, was in Anbetracht des Verhaltens der Verbindungen C₆Me₆Ru(CH₃)₂(PR₃) (PR₃ = PMe₃, PMePh₂, PPh₃)^{14b)} gegenüber [CPh₃]PF₆ erstaunlich ist.

Die Deprotonierung des Kations von **21 a** ergibt die Neutralverbindung $C_6H_6Os(CO)(C_2H_4)$ (**22**) (siehe Schema 3), die

nahezu quantitativ als gelber, luftempfindlicher Feststoff isoliert wird. Obwohl das Zentralatom in 22 eine geringere Elektronendichte als in den vergleichbaren Verbindungen $C_6H_6Os(CO)(PMe_3)^{3}$, $C_6H_6Os(C_2H_4)(PMe_3)^{4}$, 8 und 9 besitzt, zeigen Protonierungsversuche, daß die Umwandlung von $[C_6H_6OsH(C_2H_4)(CO)]^{\oplus}$ in 22 reversibel ist. 22 ist also eine Metall-Base. Die im Vergleich zu den Komplexen $C_6H_6Os(CO)(PMe_3)$ und $C_6H_6Os(C_2H_4)(PMe_3)$ sowie 8 und 9 verminderte Basizität gibt sich durch das inerte Verhalten von 22 gegenüber NH₄PF₆ zu erkennen. Mit der stärkeren Säure HBF₄ entsteht dagegen glatt das BF₄-Salz 21 b (siehe Schema 3), dessen Eigenschaften denen von 21 a sehr ähnlich sind. Die CO-Valenzschwingung von 22 ist im Vergleich zu derjenigen von $C_6H_6Os(CO)(PMe_3)$ und 8 um ca. 20 cm⁻¹ nach höheren Wellenzahlen verschoben, was auf eine Schwächung der Os-CO-Rückbindung hinweist.

Vermutlich ist auch die $Os - C_6H_6$ -Bindung in 22 aufgrund des Vorhandenseins von CO und C₂H₄ als zusätzlichen Liganden geschwächt. Während die Reaktionen der Verbindungen $C_6H_6Os(CO)(PMe_3)$ und $C_6H_6Os(C_2H_4)$ -(PMe₃) mit PMe₃ sehr langsam verlaufen und im Fall von C₆H₆Os(CO)(PMe₃) der Angriff des Phosphans bei Raumtemperatur lediglich zur Bildung des 1:1-Addukts (η^4 -C₆H₆)-Os(CO)(PMe₃)₂ führt²⁰, reagiert 22 mit PMe₃ bei 25°C in 3 Stunden zu dem Benzol-freien Produkt Os(CO)(C2H4)-(PMe₃)₃ (26). Der in Gl. 7 gezeigte Strukturvorschlag stützt sich vor allem auf die ¹H- und ³¹P-NMR-Spektren (siehe Tab. 2), in denen jeweils die Signale von zwei äquivalenten und einem weiteren, davon chemisch verschiedenen PMe₃-Liganden zu erkennen sind. Die Annahme, daß die beiden äquivalenten Phosphane axiale und nicht äquatoriale Positionen einnehmen, entspricht früheren Ergebnissen von

Tab. 2. ¹H-NMR- und IR-Daten der Komplexe 13, 15, 16, 19 und 21-25 (NMR: 60 MHz; δ in ppm, TMS int.; J und N in Hz. IR: \tilde{v} in cm⁻¹)

Komplex	Solvens ^{a)}	$\delta(C_6R_6)$	δ(MCH ₃)	v(CO) ^{b)}		
13	[D ₆]DMSO	6.43 (s)		1992		
15	D ₆ Aceton	2.60 (s)		2100, 2063		
16	C ₆ H ₆	1.99 (s)		1973, 1903		
19	C ₆ H ₆	4.64 (s)	1.07 (s)	1925		
21 a ^{c,d)}	CD_3NO_2	6.87 (s)		2020		
22°)	C ₆ H ₆	4.80 (s)		1878		
23	C ₆ H ₆	4.84 (s)	f)	1953		
24	C ₆ H ₆	4.66 (s)	1.79 (s)	1950		
25	C ₆ H ₆	1.75 (s)	0.34 (s)	1910		

^{a)} Für ¹H-NMR-Spektren. - ^{b)} In KBr. - ^{c)} δ (OsH) = -11.97 (s). - ^{d)} δ (C₂H₄): AA'BB'-Spinsystem; δ_A = 3.31, δ_B = 2.63; N = 8.0. - ^{e)} δ (C₂H₄) = 2.05 (m). - ⁰ δ (CH₂) = 2.85 (q), J(HH) = 7.0; δ (CH₂CH₃) = 1.81 (t), J(HH) = 7.0. Muetterties et al.²¹⁾ und stimmt auch mit dem Erscheinungsbild des virtuellen Tripletts im ¹H-NMR-Spektrum überein²²⁾. Die Form dieses Signals zeigt außerdem an, daß **26** ebenso wie der vergleichbare trigonal-bipyramidale Komplex Ru(PMe₃)₂[P(OMe)₃]₃²³⁾ konfigurationsstabil ist, also keine fluktuierende Struktur besitzt, wie dies für zahlreiche andere fünffach koordinierte Metall(0)-Verbindungen, z. B. des Eisens und Rutheniums, zutrifft^{21,24)}.

Schlußbemerkung

Die Bildung des Ethylen(hydrido)-Komplexes **21 a** aus der Dimethylosmium-Verbindung **19** besitzt im Zusammenhang mit Überlegungen zum Mechanismus der Fischer-Tropsch-Synthese besonderes Interesse. Nach heute vorherrschender Meinung²⁵⁾ geht man davon aus, daß die primäre C–C-Bindungsbildung an der Oberfläche des Katalysators entweder durch Verknüpfung einer CH₃- mit einer CO- oder mit einer daraus durch Hydrierung entstandenen CH₂-Gruppe erfolgt. Für beide Reaktionstypen gibt es an einund zweikernigen Metallkomplexen modellhafte Beispiele^{26,27)}. Ungeklärt ist jedoch bisher, ob der Verknüpfungsschritt (a) oder (b) von Schema 4 bevorzugt abläuft, d.h. welcher der beiden bindungstheoretisch vergleichbaren Liganden CO und CH₂ bei der Anbindung einer CH₃-Gruppe gewinnt.

Schema 4

Die fast quantitativ verlaufende Reaktion von 19 zu 21 a gibt zumindest für das hier gewählte Modellsystem, das eine Zwischenstufe mit der Baueinheit $M(CO)(CH_2)CH_3$ einschließt, eine überzeugende Antwort. Aufgrund der vorliegenden Ergebnisse darf man annehmen, daß eine CH₃-Gruppe leichter mit einer metallgebundenen CH₂- als mit einer CO-Einheit kuppelt, was auch im Einklang mit MO-Rechnungen steht¹⁷⁾. Dieser Befund bestätigt darüber hinaus die bereits von Fischer und Tropsch geäußerten Vorstellungen über den Wachstumsschritt bei der nach ihnen benannten Synthese, der als "Polymerisation von Methylen-Gruppen" formuliert wurde²⁸⁾. Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung mit Personalund Sachmitteln sowie der Degussa AG für wertvolle Chemikalienspenden. Frau M. Treiber, Herrn Dr. W. Buchner und Herrn C. P. Kneis sind wir für NMR-Messungen, Frau U. Neumann für Elementaranalysen, Frau Dr. G. Lange und Herrn F. Dadrich für Massenspektren sowie Frau I. Keupp für tatkräftige experimentelle Mitarbeit sehr zu Dank verbunden.

Experimenteller Teil

Alle Arbeiten wurden unter nachgereinigtem Argon und in Argesättigten, sorgfältig getrockneten Lösungsmitteln durchgeführt. Die Darstellung der Ausgangsverbindungen $[C_6H_6OSI_2]^{29}$, $C_6H_6OSI_2(PMe_3)^{8}$, $C_6H_6OSI_2(PiPr_3)^{9}$ und $C_6Me_6RuCl_2(CO)^{8}$ erfolgte nach Literaturangabe. – Schmelzpunkte mit DTA. – Leitfähigkeitsmessungen in Nitromethan.

Darstellung der Komplexe $C_6H_6OsI_2[P(OR)_3]$ (3, 4): Eine Suspension von 1.044 g (1.0 mmol) $[C_6H_6OsI_2]_2$ in 20 ml CH₂Cl₂ wird mit 10 mmol Triisopropylphosphit bzw. 11 mmol Triphenylphosphit versetzt und unter Rühren 3 h auf 35-40°C erwärmt. Nach dem Abkühlen wird die Lösung auf ca. 1/4 ihres Volumens eingeengt, wobei bereits ein Teil des Produktes ausfällt. Eine vollständige Fällung erfolgt durch langsame Zugabe von 50 ml Hexan zu dem Konzentrat. Man erhält orangerote, im Fall von 3 metallisch glänzende Kristalle, die dreimal mit je 10 ml Hexan gewaschen und i.Vak. getrocknet werden. Die Umkristallisation erfolgt aus CH₂Cl₂/Hexan.

(Benzol)diiodo(triisopropylphosphit)osmium(II) (3): Ausb. 1.17 g (80%); Schmp. 177°C (Zers.).

$C_{15}H_{27}I_2O_3OsP$ (730.4)	Ber. C 24.67 H 3.73 I 34.75
	Gef C 24.63 H 3 64 I 34.67

(Benzol)diiodo(triphenylphosphit)osmium(II) (4): Ausb. 1.60 g (96%); Schmp. 209°C (Zers.).

$C_{24}H_{21}I_2O_3OsP$ (832.4)	Ber. C 34.63 H 2.54 I 30.49	9
	Gef. C 34.71 H 2.36 I 30.23	8

Darstellung der Komplexe $[C_6H_6OSI(CO)L]PF_6$ (5–7): Eine Suspension von 1.0 mmol 2, 3 oder 4 in 10 ml Aceton wird mit CO gesättigt und unter ständigem Einleiten von CO tropfenweise mit einer Lösung von 253 mg (1.0 mmol) AgPF₆ in 5 ml Aceton versetzt. Die Ausgangsverbindungen gehen dabei in Lösung, und es fällt ein gelber Niederschlag (AgI) aus. Nach 20–30 min wird die Lösung durch eine Fritte, die mit Filterflocken und Celite bedeckt ist, filtriert und das Filtrat unter gleichzeitigem Einleiten von CO mit 70–100 ml Ether versetzt. Nach kurzzeitigem Stehen wird die Lösung abdekantiert, der verbleibende Feststoff dreimal mit je 10 ml Ether gewaschen und i. Vak. getrocknet. Für 7 ist eine Reinigung durch Säulenchromatographie an Al₂O₃ (Woelm, neutral, Aktiv.-Stufe V) mit CH₂Cl₂ als Laufmittel notwendig.

(Benzol)carbonyliodo(triisopropylphosphan)osmium(II)-hexafluorophosphat (5): Ausb. 379 mg (52%). – Äquivalentleitfähigkeit $\Lambda = 82 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$. – IR (KBr): $\tilde{v}(CO) = 2010 \text{ cm}^{-1}$.

	•	·	. ,				
$C_{16}H_{27}F_6IOO_8P_2$ (728.4)	Ber.	С	26.38	Η	3.74	I	17.42
	Gef.	С	26.75	Н	3.75	I	17.21

(Benzol) carbonyliodo (triisopropylphosphit) osmium (II) - hexafluorophosphat (6): Ausb. 372 mg (48%). – Äquivalentleitfähigkeit $<math>\Lambda = 81 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$. – IR (KBr): $\tilde{v}(CO) = 2039 \text{ cm}^{-1}$. $C_{16}H_{27}F_6IO_4OsP_2$ (776.4) Ber. C 24.75 H 3.51 I 16.34 Gef. C 24.67 H 3.68 I 16.24 (Benzol)carbonyliodo(triphenylphosphit)osmium(II)-hexafluorophosphat (7): Ausb. 60 mg (7%). – Äquivalentleitfähigkeit $\Lambda = 79$ cm² Ω^{-1} mol⁻¹. – IR (KBr): $\tilde{v}(CO) = 2045$ cm⁻¹.

Darstellung der Komplexe $C_6H_6Os(CO)L$ (8–10): Zu einer Suspension von 0.5 mmol 5 oder 6 bzw. 0.1 mmol 7 in 2 ml THF werden bei -78 °C zwei Äquivalente NaC₁₀H₈ in THF getropft. (Zur Darstellung einer 0.4 m Lösung von NaC₁₀H₈ werden 530 mg Naphthalin in 10 ml THF gelöst und mit einem Überschuß Natrium-Draht ca. 12 h unter Lichtausschluß gerührt). Das Reaktionsgemisch wird langsam auf Raumtemp. erwärmt, und die flüchtigen Bestandteile werden i. Vak. entfernt. Der verbleibende ölige Rückstand wird zur Abtrennung der Natrium-Salze mit 15 ml Benzol/ Hexan (1:2) extrahiert, der Extrakt rasch filtriert und das Filtrat zur Trockne gebracht. Man erhält ein hellgelbes, luftempfindliches Öl, das neben dem gesuchten Produkt (8–10) noch Naphthalin enthält. Die Charakterisierung von 8–10 erfolgt durch die IR- und NMR-Spektren sowie im Fall von 8 und 9 durch die Überführung in die Komplexsalze 11 und 12a,b (s. u.).

(Benzol)carbonyl(triphenylphosphit)osmium(0) (10): Ausb. ca. 30%. – IR (C_6H_6): $\tilde{v}(CO) = 1940 \text{ cm}^{-1}$. – ¹H-NMR: Tab. 1.

Darstellung von (Benzol)carbonylhydrido(triisopropylphosphan)osmium(11)-hexafluorophosphat (11): Eine Lösung des nach obiger Vorschrift aus 0.5 mmol 5 erhaltenen Gemisches von 8 und C₁₀H₈ in 2 ml THF wird bei – 78 °C mit überschüssigem NH₄PF₆ (123 mg, 0.75 mmol) versetzt und langsam auf Raumtemp. erwärmt. Durch kurzzeitiges Evakuieren wird gebildetes NH₃ entfernt. Die Zugabe von 20 ml Ether führt zur Fällung eines farblosen Feststoffes, der dreimal mit 10 ml Ether gewaschen, i. Vak. getrocknet und zur Reinigung in 5 ml CH₂Cl₂ gelöst wird. Die Lösung wird filtriert und das Filtrat vorsichtig mit Ether versetzt. Es bildet sich ein farbloser Niederschlag, der von der überstehenden Lösung abgetrennt, mehrmals mit Ether gewaschen und i. Vak. getrocknet wird; Ausb. 53% (bez. auf 5). – Äquivalentleitfähigkeit $\Lambda = 77$ cm² Ω^{-1} mol⁻¹. – IR (KBr): \tilde{v} (OsH) = 2130, \tilde{v} (CO) = 1959 cm⁻¹. C₁₆H₂₈F₆OOSP₂ (602.5) Ber. C 31.89 H 4.86 Os 31.57

Darstellung von (Benzol)carbonylhydrido(triisopropylphosphit)osmium(II)-tetrafluoroborat (12b): Eine Lösung des aus 0.5 mmol 6 und NaC₁₀H₈ erhaltenen Gemisches von 9 und C₁₀H₈ in 2 ml Ether wird mit einer äquimolaren Menge HBF₄ · OEt₂, die man aus 50 µl 54proz. etherischer HBF₄ und 1 ml Ether erhält und die durch Abdekantieren gereinigt wird, tropfenweise versetzt. Dabei fällt sofort ein farbloser Feststoff aus. Die Reaktion ist beendet, wenn bei Zugabe eines weiteren Tropfens Säure keine Niederschlagsbildung mehr erfolgt. Man läßt absitzen, dekantiert die orangefarbene Ether-Lösung ab, wäscht den blaßgelben Rückstand dreimal mit je 5 ml Ether und trocknet diesen i. Vak.; Ausb. 63% (bez. auf 6). – IR (KBr): $\tilde{v}(CO) = 1990 \text{ cm}^{-1}$.

C₁₆H₂₈BF₄O₄OsP (592.4) Ber. C 32.44 H 4.76 Os 32.11 Gef. C 32.05 H 4.67 Os 32.30

Die Darstellung des PF₆-Salzes **12a** erfolgt, ausgehend von dem Gemisch aus $6/C_{10}H_8$ und NH₄PF₆, analog wie für **11** beschrieben. Nach dem Erwärmen auf Raumtemp. wird noch 2 h gerührt, bevor die weitere Aufarbeitung erfolgt; Ausb. 25% (bez. auf 6). Die Charakterisierung erfolgt durch Vergleich der ¹H-NMR-Daten mit **12b** (siehe Tab. 1).

Darstellung der Komplexe $C_6H_6Os(CO)L$ (8, 9) aus 11 und 12a: Eine Lösung von 0.15 mmol 11 bzw. 12a in 2 ml THF wird bei Raumtemp. mit überschüssigem NaH (ca. 100 mg) versetzt. Nach beendeter Gasentwicklung (H₂) wird noch 5 min (für die Darstellung von 9) bzw. 30 min (für die Darstellung von 8) gerührt, das Solvens i.Vak. entfernt und der Rückstand in 10 ml Benzol gelöst. Nach kurzem Rühren wird die Lösung durch Filterflocken filtriert und das Filtrat zur Trockne gebracht. Eine analysenreine Probe von 8 erhält man durch Lösen des Rückstandes in Hexan und Abkühlen der Lösung auf -78 °C. 9 wurde durch das ¹H-NMR-Spektrum (Tab. 1) und das IR-Spektrum [\tilde{v} (CO) = 1888 cm⁻¹, in Hexan] charakterisiert.

(Benzol)carbonyl(triisopropylphosphan)osmium(0) (8): Ausb. 58 mg (85%). – IR (THF); $\tilde{v}(CO) = 1855 \text{ cm}^{-1}$.

Darstellung von (Benzol)carbonyldiiodoosmium(II) (13): Eine Suspension von 1.0 g (0.96 mmol) $[C_6H_6OSI_2]_2$ in 60 ml CH_2CI_2 wird unter CO 20 h bei 40°C gerührt. Nach dem Abkühlen wird die Lösung auf ca. 5 ml eingeengt und das Produkt durch Zugabe von 20 ml Hexan vollständig gefällt. Der rote Feststoff wird durch Dekantieren von der überstehenden Lösung getrennt, dreimal mit je 10 ml Hexan gewaschen und i. Vak. getrocknet; Ausb. 1.05 g (quantitativ). – Schmp. 197°C (Zers.). – MS (70 eV): m/z (%) = 552 (5) $[M^+]$, 425 (4) $[M^+ - I]$, 397 (9) $[M^+ - I - CO]$.

 $\begin{array}{c} C_7H_6I_2OOs~(550.1) & \text{Ber. C } 15.28 \ \text{H } 1.10 \ \text{I } 46.14 \\ & \text{Gef. C } 15.09 \ \text{H } 1.00 \ \text{I } 46.36 \end{array}$

Darstellung von Dicarbonylchloro(hexamethylbenzol)ruthenium-(II)-hexafluorophosphat (15): Eine Suspension von 182 mg (0.5 mmol) $C_6Me_6RuCl_2(CO)$ in 10 ml Aceton wird unter CO langsam mit einer Lösung von 126 mg (0.5 mmol) AgPF₆ in 5 ml Aceton versetzt. Nach 45min. Rühren im schwachen CO-Strom entsteht eine orangefarbene Suspension, die filtriert wird. Zugabe von Ether zu dem Filtrat unter CO führt zur Fällung eines orangegelben Feststoffes, der abfiltriert, zweimal mit je 1 ml CH₂Cl₂ gewaschen und i. Vak. getrocknet wird; Ausb. 150 mg (60%).

C₁₄H₁₈ClF₆O₂PRu (499.8) Ber. C 33.63 H 3.63 Ru 20.22 Gef. C 33.25 H 3.80 Ru 19.79

Darstellung von Dicarbonyl(hexamethylbenzol)ruthenium(0) (16): Eine Suspension von 182 mg (0.36 mmol) 15 in 2 ml frisch destilliertem THF wird bei -78 °C langsam mit zwei Äquivalenten (2.1 ml) NaC₁₀H₈ in THF versetzt. Nach Erwärmen auf Raumtemp. wird das Reaktionsgemisch noch 15 min gerührt und dann i. Vak. zur Trockne gebracht. Die weitere Aufarbeitung erfolgt wie für 8–10 beschrieben. Das mit Naphthalin verunreinigte Öl wird zur Reinigung an Al₂O₃ (Woelm, neutral, Aktiv.-Stufe III) zunächst mit Hexan chromatographiert. Nach Abtrennung der Naphthalin-haltigen Phase wird mit Benzol eine gelbe Fraktion eluiert. Beim Entfernen des Solvens aus dem Eluat tritt bereits teilweise Zersetzung ein. Das verbleibende gelbbraune, luftempfindliche Öl wurde IRund NMR-spektroskopisch charakterisiert (siehe Tab. 2); Ausbeute an 16 ca. 12 mg (11%).

Reaktion von $[C_6H_6OsI_2]_2$ mit Na_2CO_3 und CO: Eine mit CO gesättigte Suspension von 261 mg (0.25 mmol) $[C_6H_6OsI_2]_2$ in 25 ml Ethanol und 5 ml Wasser wird mit ca. 1 g Na_2CO_3 30 h bei 50°C gerührt. Nach Abkühlen und Abtrennen der unlöslichen Bestandteile (13 und etwas $[C_6H_6OsI_2]_2$) wird das Filtrat i.Vak. zur Trockne gebracht. Das verbleibende gelbe Öl wird in ca. 10 ml Benzol gelöst und die Lösung durch Filterflocken filtriert. Das klare Filtrat wird auf ca. 2 ml eingeengt und durch Zugabe von Hexan ein gelber Niederschlag gefällt. Dieser wird abfiltriert, dreimal mit je 5 ml Hexan gewaschen und i.Vak. getrocknet; Ausb. 120 mg (43%). IR-Spektrum^{13b)} und Elementaranalyse belegen die Bildung von $OsI_2(CO)_4$.

 $C_4I_2O_4Os$ (556.1) Ber. C 8.64 I 45.65 Gef. C 9.12 I 45.83

Darstellung von (Benzol)carbonyldimethylosmium(II) (19): Eine Suspension von 275 mg (0.5 mmol) 13 in 5 ml Benzol wird bei Raumtemp. langsam mit 3.3 ml einer 0.6 M Lösung von Methyllithium in Ether (2 mmol) versetzt. Es entsteht sehr rasch eine orangebraune Lösung, die noch 10 min gerührt und danach i. Vak. zur Trockne gebracht wird. Der Rückstand wird mit 5 ml Benzol/Hexan (1:1) versetzt und überschüssiges Methyllithium durch vorsichtige Zugabe von Al₂O₃ (Aktiv.-Stufe V) zerstört. Danach wird die Benzol/Hexan-Lösung an Al₂O₃ (Woelm, neutral, Aktiv.-Stufe III) chromatographiert. Man eluiert mit Benzol/Hexan (1:1) eine gelbe Zone, die nach Abziehen des Solvens ein gelbes, mikrokristallines Pulver liefert; Ausb. 103 mg (63%). – Schmp. 130°C (Zers.). – MS (70 eV): m/z (%) = 328 (60) [M⁺], 313 (32) [M⁺ – CH₃], 298 (17) [M⁺ – 2 CH₃], 285 (63) [M⁺ – CO – CH₃], 281 (100) [M⁺ – CH₃ – CH₃OH].

> C₉H₁₂OOs (326.4) Ber. C 33.11 H 3.71 Os 58.27 Gef. C 33.00 H 3.83 Os 58.05

Darstellung von (Benzol)carbonyl(ethylen)hydridoosmium(II)hexafluorophosphat (**21 a**): Eine Lösung von 75 mg (0.23 mmol) **19** in 3 ml Ether wird bei $-78 \,^{\circ}$ C tropfenweise mit einer Lösung von 89 mg (0.23 mmol) [CPh₃]PF₆ in 3 ml CH₂Cl₂ versetzt. Nach Erwärmen auf Raumtemp. wird das Reaktionsgemisch noch 1 h gerührt. Dabei beginnt sich ein hellbrauner Niederschlag abzuscheiden, dessen Bildung durch Zugabe von 15 ml Ether vervollständigt wird. Nach kurzem Stehenlassen wird die überstehende Lösung abdekantiert, der Rückstand dreimal mit je 10 ml Ether und einmal mit 5 ml Hexan gewaschen und i. Vak. getrocknet; Ausb. 98 mg (91%). $- {}^{13}$ C-NMR (CD₃NO₂): $\delta = 172.94$ (s) [CO], 99.61 (s) [C₆H₆], 27.22 (s) [C₂H₄].

Aus der Mutterlauge und den Waschlösungen wird nach Entfernen des Solvens ein fast farbloser Feststoff isoliert, der durch Chromatographie an Al_2O_3 (Woelm, neutral, Aktiv.-Stufe III) mit Hexan als Laufmittel gereinigt und massenspektrometrisch als Triphenylmethan identifiziert wird; Ausb. nahezu quantitativ.

Darstellung von (Benzol)carbonyl(ethylen)osmium(0) (22): Eine Suspension von 107 mg (0.23 mmol) 21a in 3 ml THF wird bei -78 °C mit einem ca. 10fachen Überschuß NaH (50-60 mg) versetzt. Bei langsamem Erwärmen auf Raumtemp. ist eine Gasentwicklung (H₂) zu beobachten. Nach 30min. Rühren wird die goldbraune Suspension i. Vak. zur Trockne gebracht und der Rückstand portionsweise mit insgesamt 20 ml Benzol/Hexan (1:1) extrahiert. Die vereinigten Extrakte werden filtriert und das Lösungsmittel i. Vak. entfernt. Man erhält einen gelben, luftempfindlichen Feststoff; Ausb. 57 mg (77%). – Schmp. 98°C (Zers.). – MS (70 eV): m/z (%) = 326 (74) [M⁺], 298 (57) [M⁺ – CO] bzw. [M⁺ – C₂H₄], 270 (78) [M⁺ – CO – C₂H₄], 268 (100) [M⁺ – CO – C₂H₆]. C₉H₁₀OOS (324.4) Ber. C 33.33 H 3.11 Os 58.64

Gef. C 32.97 H 3.02 Os 58.40

Darstellung von (Benzol)carbonyl(ethylen)hydridoosmium(II)tetrafluoroborat (21b) aus 20: Zu einer Lösung von 20 mg (0.06 mol) 20 in 3 ml Ether wird bei Raumtemp. so lange eine Lösung von HBF₄ in Ether (54proz.) getropft, bis kein Niederschlag mehr ausfällt. Das Lösungsmittel wird abdekantiert, der Rückstand dreimal mit je 5 ml Ether gewaschen und i. Vak. getrocknet. Die Charak-

terisierung erfolgt durch Vergleich des ¹H-NMR-Spektrums mit demjenigen von 21 a; Ausb. 25 mg (98%).

Darstellung von (Benzol)carbonylethyliodoosmium(II) (23): Eine Lösung von 65 mg (0.14 mmol) 21 a in 2 ml Aceton wird mit 50 mg (0.33 mmol) NaI versetzt und bei Raumtemp. 10 min gerührt. Das Solvens wird i. Vak. entfernt und der Rückstand zweimal mit je 5 ml Benzol extrahiert. Die vereinigten Extrakte werden filtriert, das Filtrat wird auf ca. 1 ml eingeengt und mit Hexan versetzt. Es bildet sich ein orangefarbener, luftempfindlicher Feststoff, der durch Dekantieren von der Mutterlauge getrennt, mit Hexan gewaschen und i.Vak. getrocknet wird; Ausb. 38 mg (63%). - MS (70 eV): m/z (%) = 454 (56) [M⁺], 425 (45) [M⁺ - C₂H₅], 397 (100) [C₆H₆OsI⁺], 327 (20) [M⁺ - I], 270 (17) [C₆H₆Os⁺].

Darstellung von (Benzol)carbonyliodomethylosmium(II) (24): Eine Suspension von 205 mg (0.37 mmol) 13 in 3 ml Benzol wird bei Raumtemp. mit 2.1 ml einer 0.17 м Lösung von Methyllithium in Ether (0.37 mmol) versetzt und wie für 19 beschrieben aufgearbeitet. Bei der Chromatographie an Al₂O₃ (Woelm, neutral, Aktiv.-Stufe III) eluiert man mit Benzol zuerst 19 (Hauptprodukt) und danach eine orangefarbene Fraktion, aus der nach Abziehen des Solvens ein orangegelber Feststoff isoliert wird; Ausb. 11 mg (7%). Die Charakterisierung erfolgt durch das IR- und ¹H-NMR-Spektrum (siehe Tab. 2). – MS (70 eV): m/z (%) = 440 (44) [M⁺], 425 (31) [M⁺ - CH₃], 397 (68) [C₆H₆OsI⁺], 313 (31) [M⁺ - I], 298 (18) $[C_6H_6OsCO^+]$.

Darstellung von Carbonyl(hexamethylbenzol)dimethylruthenium(II) (25): Ausgehend von 181 mg (0.5 mmol) C₆Me₆RuCl₂(CO), analog wie für 19 beschrieben, erhält man einen gelben, mikrokristallinen Feststoff; Ausb. 56 mg (35%). - Schmp. 117°C (Zers.). -MS (70 eV): m/z (%) = 322 (24) [M⁺], 307 (4) [M⁺ - CH₃], 294 $(25) [M^+ - CO], 292 (46) [M^+ - 2 CH_3], 279 (51) [M^+ - CO -$ CH₃], 264 (78) $[C_6Me_6Ru^+]$, 132 (27) $[Ru(CH_3)^{+}_{2}]$, 130 (20) [RuCO⁺].

C₁₅H₂₄ORu (321.4) Ber. C 56.05 H 7.53 Ru 31.44 Gef. C 55.68 H 7.53 Ru 31.22

Darstellung von Carbonyl(ethylen)[tris(trimethylphosphan)]osmium(0) (26): Eine Lösung von 33 mg (0.1 mmol) 22 in 0.5 ml Benzol wird mit einem Überschuß (ca. 0.25 ml) PMe₃ versetzt und 3 h bei Raumtemp. gerührt. Die flüchtigen Bestandteile werden i. Vak. entfernt und der Rückstand dreimal mit je 1 ml kaltem Hexan gewaschen. Nach dem Trocknen i. Vak. erhält man einen farblosen, mikrokristallinen Feststoff; Ausb. 21 mg (44%). – IR (Hexan): $\tilde{v}(CO) = 1895 \text{ cm}^{-1}$. $-{}^{1}\text{H-NMR} (C_6D_6)$: $\delta = 1.27 \text{ (d)}, J(PH) =$ 2.8 Hz [1 PMe₃]; 1.26 (virtuelles t), N = 13.7 Hz [2 PMe₃]; 1.00 (m), 1.20 (m), 1.80 (m) $[C_2H_4]$. $-{}^{31}P$ -NMR (C_6D_6) : $\delta = -33.50$ (d), J(PP) = 11.9 Hz [2 P]; -46.44 (t), J(PP) = 11.9 Hz [1 P].

CAS-Registry-Nummern

2: 97477-25-3 / 3: 118538-62-8 / 4: 118538-63-9 / 5: 97477-43-5 / 6: 118538-65-1 / 7: 118538-67-3 / 8: 97477-27-5 / 9: 118538-68-4 / 10: 118538-69-5 / 11: 97568-37-1 / 12a: 118538-71-9 / 12b: 118538-79-7 / 13: 109013-42-5 / 14: 71652-17-0 / 15: 118538-73-1 / 16: 118538-74-2 / cis-18: 17632-05-2 / trans-18: 25340-26-5 / 19: 109013-43-6 / 21a: 109013-46-9 / 21b: 109013-45-8 / 22: 109013-47-0 / **23**: 118538-75-3 / **24**: 118538-76-4 / **25**: 118538-77-5 / **26**: 118538-78-6 / $[C_6H_6OsI_2]_2$: 75353-15-0 / PMe₃: 594-09-2 / P(OiPr)₃: 116-17-6 / P(OPh)3: 101-02-0

- ¹⁾ XIV. Mitteilung: K. Zenkert, H. Werner, Chem. Ber. 121 (1988) 811.
- ²⁾ H. Werner, Angew. Chem. 95 (1983) 932; Angew. Chem. Int. Ed. Engl. 22 (1983) 927.
- ³⁾ R. Werner, H. Werner, Chem. Ber. 115 (1982) 3781.
- ⁴⁾ R. Werner, H. Werner, Chem. Ber. 116 (1983) 2074.
- ^{5) 5a)} J. K. Hoyano, W. A. G. Graham, J. Am. Chem. Soc. 104 (1982) 3723. - 56 A. J. Rest, I. Whitwell, W. A. G. Graham, J. K. Hoyano, A. D. McMaster, J. Chem. Soc., Chem. Commun. 1984, 624. – ^{5c)} A. J. Rest, I. Whitwell, W. A. G. Graham, J. K. Hoyano,
- A. D. McMaster, J. Chem. Soc., Dalton Trans. 1987, 1181. ⁶⁾ J. K. Hoyano, A. D. McMaster, W. A. G. Graham, J. Am. Chem. Soc. 105 (1983) 7190.
- ⁷⁾ K. Roder, H. Werner, Angew. Chem. 99 (1987) 719; Angew. Chem. Int. Ed. Engl. 26 (1987) 686.
- ⁸⁾ H. Werner, R. Werner, Chem. Ber. 115 (1982) 3766.
- 9) H. Werner, H. Kletzin, K. Roder, J. Organomet. Chem. 355 (1988) 401.
- ¹⁰⁾ K. Zenkert, *Dissertation*, Universität Würzburg 1987
- ¹¹⁾ H. Werner, K. Zenkert, J. Organomet. Chem. 345 (1988) 151.
- ¹²⁾ M. A. Bennett, T. W. Matheson, J. Organomet. Chem. 153 (1978)
- ¹³⁾ ^{13a)} W. Hieber, H. Stallmann, Chem. Ber. **75** (1942) 1472. ^{13b)} M. Pankowski, M. Bigorgne, J. Organomet. Chem. 19 (1969) 393
- ¹⁴⁾ ¹⁴a) H. Kletzin, H. Werner, O. Serhadli, M. L. Ziegler, Angew. Chem. 95 (1983) 49; Angew. Chem. Int. Ed. Engl. 22 (1983) 46. – ^{14b)} H. Werner, H. Kletzin, A. Höhn, W. Paul, W. Knaup, M. L.
- Ziegler, O. Serhadli, J. Organomet. Chem. 306 (1986) 227. ¹⁵⁾ ^{15a} J. C. Hayes, G. D. N. Pearson, N. J. Cooper, J. Am. Chem. Soc. 103 (1981) 4648. ^{15b} J. C. Hayes, N. J. Cooper, J. Am. Chem. Soc. 104 (1982) 5570.
- ¹⁶⁾ H. Günther, NMR-Spektroskopie, Verlag Georg Thieme, Stuttgart 1973. ¹⁷⁾ H. Berke, R. Hoffmann, J. Am. Chem. Soc. **100** (1978) 7224.
- ¹⁸⁾ Bei Zugabe von D₂O zu einer Lösung von 21 a in CD₂Cl₂ oder CD₃NO₂ tritt kein H/D-Austausch ein. Für erfolgreich verlaufene Versuche an ähnlichen Verbindungen siehe: H. Werner, R. Feser, J. Organomet. Chem. 232 (1982) 351, und Lit.⁴⁾
- ¹⁹⁾ H. Werner, H. Kletzin, J. Organomet. Chem. 228 (1982) 289.
- ²⁰⁾ R. Werner, Dissertation, Universität Würzburg, 1981.
- ²¹⁾ T. V. Harris, J. W. Rathke, E. L. Muetterties, J. Am. Chem. Soc.
- 100 (1978) 6966.
 ^{22) 22a)} R. K. Harris, Canad. J. Chem. 42 (1964) 2275. ^{22b)} R. K. Harris, Inorg. Chem. 5 (1966) 701. ^{22c)} R. G. Goodfellow, J. Chem. Soc., Chem. Commun. 1968, 114.
 ²²¹ V. W. G. Chem. Commun. 1968, 114.
- ²³⁾ H. Werner, J. Gotzig, J. Organomet. Chem. 284 (1985) 73.
 ²⁴⁾ ²⁴a⁹ H. H. Karsch, H.-F. Klein, H. Schmidbaur, Chem. Ber. 110 (1977) 2200. ^{24b)} A. D. English, S. D. Ittel, C. A. Tolman, P.
- Meakin, J. P. Jesson, J. Am. Chem. Soc. 99 (1977) 117. ^{25) 25a)} C. K. Rofer-DePoorter, Chem. Rev. 81 (1981) 447. ^{25b)} W. A. Herrmann, Angew. Chem. 94 (1982) 118; Angew. Chem. Int. Ed. Engl. 21 (1982) 117. – ^{25c)} G. Henrici-Olivé, S. Olivé in The Chemistry of the Metal–Carbon Bond (F. R. Hartley, S. Patai,
- Chemistry of the Metal Carbon Bond (F. R. Hartley, S. Patai, Hrsg.), Bd. 3, Kapitel 9, Wiley, New York 1985. ²⁶⁾ CO + CH₃: ^{26a)} A. Wojcicki, Adv. Organomet. Chem. 11 (1973) 87. ^{26b)} F. Calderazzo, Angew. Chem. **89** (1977) 305; Angew. Chem. Int. Ed. Engl. 16 (1977) 299. ^{26c)} E. J. Kuhlmann, J. J. Alexander, Coord. Chem. Rev. 33 (1980) 195. ^{26d)} T. C. Flood, Top. Stereochem. 12 (1981) 37. ^{26e)} J. J. Alexander in The Chemistry of the Metal Carbon Bond (F. R. Hartley, S. Patai, Hrsg.), Bd. 2, Kapitel 5, Wiley, New York 1985. ²⁷⁾ CH₂ + CH₃: ^{27a)} R. C. Brady III, R. Pettit, J. Am. Chem. Soc. 102 (1980) 6181. ^{27b)} K. Isobe, D. G. Andrews, B. E. Mann, P. M. Maitlis, J. Chem. Soc., Chem. Commun. 1981, 809. ^{27c)}
- P. M. Maitlis, J. Chem. Soc., Chem. Commun. 1981, 809. -2^{276} I. M. Saez, N. J. Meanwell, A. Nutton, K. Isobe, A. Vazquez de Miguel, D. W. Bruce, S. Okeya, D. G. Andrews, P. R. Ashton, I. R. Johnstone, P. M. Maitlis, J. Chem. Soc., Dalton Trans. 1986, 1565. – ^{27d)} D. L. Thorn, T. H. Tulip, J. Am. Chem. Soc. 103 (1981) 5984. – ^{27e)} D. L. Thorn, Organometallics 4 (1985) 192. Siehe auch Lit. 15).
- ²⁸⁾ F. Fischer, H. Tropsch, Brennst.-Chem. 7 (1926) 97.
- ²⁹⁾ G. Winkhaus, H. Singer, M. Kricke, Z. Naturforsch., Teil B, 21 (1966) 1109. [316/88]